Accessibility: How Can We Measure It?

Concept, Key Indicators, Measurements, Base Data

Carsten Schürmann RRG Spatial Planning and Geoinformation

NORDREGIO Course on "Innovative Indicators"

19-21 October, Roskilde Denmark

Presentation Contents

- Part 1. Concept and Key Indicators
- Part 2. Examples of Accessibility Indicators Discussion of Indicator Dimensions
- Part 3.Fields of ApplicationSome Theoretical Considerations
- Part 4. Examples Indicator Discussion
- Part 5.Needed Base Data
Conclusions
Projects Applying Accessibility Indicators

Part 1.

Concept and Key Indicators

Accessibility is the main product of a transport system. It determines the **locational advantage** of a region relative to all regions.

Accessibility indicators can be defined to reflect both *within-region infrastructure* and *infrastructure outside* the region which affect the region.

Accessibility indicators range from simple infrastructure measures (endowment indicators) towards complex indicators taking account of connectivity and opportunities.

Accessibility Indicators: A Definition

"Accessibility indicators describe the location of an area with respect to opportunities, activities or assets existing in other areas and in the area itself, where ,area' may be a region, a city or a corridor [or any other spatial entity, CS] in relation to the ease/efforts of getting there."

(Wegener et al., 2002)

In Contrast: Endowment Indicators

Endowment indicators are measures for *quantifying* existing *assets* within a country, region, city or corridor (or any other spatial entity), neglecting the assets of all other regions and the connections to them.

Such indicators include, for example,

- Number of railway stations, airports, hospitals, or schools
- Length or density of motorways or shipping networks
- Percent of broadband access in a region

_ _ _

Endowment Indicators and Accessibility Indicators

Endowment indicators vs. Accessibility indicators

Assets of each *individual* region vs.

Assets and connectivity between all regions

Main Drawbacks of Endowment Indicators

- only *little differences* over time (and what do they mean?)
- qualitative aspects not considered
- neglecting internal variances

In Contrast: Isochrones

Main Drawbacks of Isochrones

- considering only one origin at a time
- results can hardly be compared to any standards
- difficult to derive quantitative numbers (except for area)

Common Accessibility Indicators

Three basic types of accessibility indicators are widely used in various studies, which are:

- Travel time, *travel cost*, or travel distance indicators
- Daily accessibility
- Potential accessibility

The three basic types *differ* from each other in the way they implement the *activity* and *impedance functions*.

Indicator Characteristics

Travel costAccumulated travel cost/travel time to a set of activitiesDaily accessibilityAccumulated activities in a given travel timePotentialAccumulated activities weighted by a function of travel cost

Framework of Accessibility Indicators

Endowment Indicators	Travel time and Travel Cost Indicators	Daily and Potential Accessibility
Infrastructure measures Length and density of motorways, number of railway stations, number of facilities for higher education etc.	Travel time to nearest airport, university, agglomeration etc. Accumulated travel costs to a set of certain activities	Daily accessibility: accumulated activities in a given time Potential: accumulated activities weighted by a function of travel time or travel cost
NUTS 0 – NUTS 3 levels	NUTS 2 – NUTS 5, also point locations	NUTS 2 – NUTS 5, also point locations

increasing complexity

Indicator Dimensions

Type of indicators	Travel cost, daily accessibility, potential
Spatial scale	Continental, trans-national, national, regional, local (NUTS 0 – NUTS 5)
Destination activities	Diff. groups, occupations, opportunities (population, GDP, jobs etc.)
Modes	Road, rail, air, waterways, multimodal
Standardisation	Type of standardisation (averaging, min/max), class breaks
Spatial impedances	Distance, travel time, travel cost
Constraints	Speed limits, access restrictions, maximum driving hours, capacity, check-in times
Barriers	Political, economic, legal, cultural barriers
Types of transport	Personal travel, goods transport
Dynamics	Single year, different points in time, time series

Examples of Accessibility Indicators Discussion of Indicator Dimensions

Accessibility Indicators: Examples and Discussion

A number of indicators should be **exemplified** and **discussed** now against the background of

- Types of indicators
- Spatial scale
- Destination activities
- Modes
- Standardisation

Type of Indicator

Daily accessibility (left), Potential accessibility (right)

© IRPUD, 1997

Spatial Scale (I)

Potential accessibility (Peripherality Study)

NUTS 0

NUTS 1

NUTS 2

NUTS 3

© Schürmann and Talaat, 2000

Spatial Scale (II)

Broadband availability in Finland (ESPON 1.2.2)

This map does not necessarily reflect the opinion of the ESPON Monitoring Committee

© Karelian Institute, 2003

Destination Activities

Accessibility to GDP (Peripherality Study)

Modes

Daily accessibility for *road* (left), *rail* (right) (VASAB2010+)

21

© IRPUD, 2000

Standardisation

Potential accessibility by car *detailed* illustrated with some *15 classes* (Peripherality)

and its *use in policy* analysis

(2nd Cohesion Report of the European Commission)

A.4 Central and peripheral regions

Part 3.

Fields of Applications Some Theoretical Considerations

Usage of Accessibility Indicators

- Accessibility indicators are used in a variety of applications and assessments as important indicators. They can be used
- to describe the *current situation of regions*
- to monitor regional *developments over time*
- to assess policy measures, programmes, investments and projects (both ex-ante, ex-post)
- to *feed case studies* or specific model applications
- as benchmarks (both over time or between regions)

They gained particular importance in *assessing territorial cohesion* and *individual project appraisals*.

Theory: Accessibility and Regional Development

25

Theory: Accessibility and Economic Development

The *important role of transport infrastructure* for regional development is one of the fundamental principles of regional economics.

Hypothesis:

Regions with *better access* (i.e. higher accessibility) to input materials and markets will be *more productive, competitive* and hence *more successful* than remote regions.

$$Production - Q_{i} = L_{i}^{\alpha} R_{i}^{\beta} K_{i}^{\gamma} A_{i}^{\delta}$$

$$Labour Capital$$

Theory: Accessibility and Cohesion

European Spatial Development Perspective (1999) stated:

"Good accessibility of European regions **improve their competitive position** but also the competitiveness of Europe as a whole." (69)

"The creation of several dynamic zones of global economic integration, well distributed throughout the EU territory and comprising a **network of internationally accessible** metropolitan regions and their linked hinterland (...), will play a **key role in improving spatial balance** in Europe." (20)

Approach to Assess Locational (Dis-)Advantages

Part 4.

Examples - Indicator Discussions

Ex. 1: Potential, FUAs, multimodal

Q2: Presentation

© S&W, 2003

Ex. 2: Mean Travel Times to Nearest Centres

Ex. 3: Travel Time and Costs for a Trip to Brussels

Q1: Type of Indicator **Q2:** How are the indicators presented?

© Nordregio, 2002

Ex. 4: Population Potential at Train Stations

Q1: Selection of origins Q2: Standardisation

Ex. 5: Travel Time by Car to Swedish Airports

© Dahlgren, 2005

Ex. 6: Potential Accessibility by Different Modes

Ex. 7: Potential Accessibility to Population (Car)

EU 15 (left), EU15+5 (middle), EU15+12 Q1: What is the spatial scope of the maps? Q2: How do the average numbers change?

© Schürmann and Talaat, 2000

Ex. 8: Daily Accessibility by Rail

Absolute numbers 1993 (left), absolute change 1993-2010 (right) Q1: What are the (dis-)advantages of this type of illustrations? Q2: How are the changes visualised and how are they to be interpreted?

© Spiekermann and Wegener, 1994

Ex. 9: From Travel Time to Indicator

Driving time to hospitals (left), proportion of massif population >60 min from hospital (right)

Q1: What is an indicator, what is just an illustration?

© Nordregio/ IRPUD, 2004

Part 5.

Needed Base Data

Conclusions

Projects Applying Accessibility Indicators

Data Needs

- Transport networks (road, rail, air, waterways, public transport)
- **Region boundaries**, boundaries of other spatial entities
- Public infrastructure (ITC, universities, hospitals, ...) including relevant statistical data
- Regional data (population, GDP), or similar data for other spatial entities.
- Additional data used for model refinements (e.g. barriers, border waiting times, check-in times, speed limits, capacity restrictions)

The level of detail for all these data depend on the particular application/project.

Conclusions (I)

- No common definition of accessibility indicators
- Not only one accessibility indicator, but there is a variety of accessibility indicators used
- Different indicators are used for different questions
- Indicators can be adjusted to specific questions
- Choice of indicator becomes a matter of concern
- Danger to use ,wrong indicator⁺ (by chance, by intention)
- Indicator results must be interpreted carefully

Need to **embed** indicators in overall **analysis framework**

Conclusions (II)

- Can be used in a variety of applications, from local scale to European scale
- Are widely used in many publications

- Represent *important interface* between the *transport system* and *regional development*
- Deserve growing importance in the EU in the discussion of territorial cohesion
- Sometimes analysis framework poorly developed
- Convergence in accessibility often misunderstood as convergence in economic situation

Relevant Projects – Interesting Links (Examples) (I)

- ESPON 1.1.1, 1.2.1, 1.2.2 and 2.1.1 www.espon.lu
- Study Programme on European Spatial Planning
- SASI, IASON (EC R&D Programs) www.raumplanung.uni-dortmund.de/irpud/pro/sasi/sasi.htm www.wt.tno.nl/iason/
- Peripherality Study (DG Regio) europa.eu.int/comm/regional_policy/sources/docgener/studies/study_de.htm
- Mountain Areas in Europe (DG Regio) www.nordregio.se
- **Study on the Islands and Outermost Regions** (DG Regio)
- VASAB 2010+ (Interreg II C Project) www.vasab.org.pl

Relevant Projects – Interesting Links (Examples) (II)

- Urban Audit (DG Regio) europa.eu.int/comm/regional_policy/urban2/urban/audit/src/intro.html
- GEMACA II (Interreg II C Project) www.iaurif.org/en/projects/networking/gemaca/gemaca.htm
- TEN_STAC (DG TREN) www.nea.nl/ten-stac/
- Northern Peripheral, Sparsely Populated Regions in the EU (Nordregio) www.nordregio.se
- AsPIRE Aspatial Peripherality (EC FP5 Program) www1.sac.ac.uk/management/External/Projects/AspireExternal/Default.asp
- Las regiones ultraperiféricas de la Unión Europea: Análisis de ultraperificidad (MCRIT) www.mcrit.com/rup/

Dipl.-Ing. Carsten Schürmann RRG Spatial Planning and Geoinformation Eichenweg 16 D-23758 Oldenburg i.H. Germany

Email: cs@brrg.de Internet: www.brrg.de

Tel.: +49 (0) 4361 / 508 777

Fax: +49 (0) 4361 / 508 779

